Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073602

RESUMO

Brain-computer interfaces (BCI) are a type of assistive technology that uses the brain signals of users to establish a communication and control channel between them and an external device. BCI systems may be a suitable tool to restore communication skills in severely motor-disabled patients, as BCI do not rely on muscular control. The loss of communication is one of the most negative consequences reported by such patients. This paper presents a BCI system focused on the control of four mainstream messaging applications running in a smartphone: WhatsApp, Telegram, e-mail and short message service (SMS). The control of the BCI is achieved through the well-known visual P300 row-column paradigm (RCP), allowing the user to select control commands as well as spelling characters. For the control of the smartphone, the system sends synthesized voice commands that are interpreted by a virtual assistant running in the smartphone. Four tasks related to the four mentioned messaging services were tested with 15 healthy volunteers, most of whom were able to accomplish the tasks, which included sending free text e-mails to an address proposed by the subjects themselves. The online performance results obtained, as well as the results of subjective questionnaires, support the viability of the proposed system.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletroencefalografia , Potenciais Evocados P300 , Humanos , Smartphone , Interface Usuário-Computador
2.
J Neuroeng Rehabil ; 14(1): 49, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558741

RESUMO

BACKGROUND: Certain diseases affect brain areas that control the movements of the patients' body, thereby limiting their autonomy and communication capacity. Research in the field of Brain-Computer Interfaces aims to provide patients with an alternative communication channel not based on muscular activity, but on the processing of brain signals. Through these systems, subjects can control external devices such as spellers to communicate, robotic prostheses to restore limb movements, or domotic systems. The present work focus on the non-muscular control of a robotic wheelchair. METHOD: A proposal to control a wheelchair through a Brain-Computer Interface based on the discrimination of only two mental tasks is presented in this study. The wheelchair displacement is performed with discrete movements. The control signals used are sensorimotor rhythms modulated through a right-hand motor imagery task or mental idle state. The peculiarity of the control system is that it is based on a serial auditory interface that provides the user with four navigation commands. The use of two mental tasks to select commands may facilitate control and reduce error rates compared to other endogenous control systems for wheelchairs. RESULTS: Seventeen subjects initially participated in the study; nine of them completed the three sessions of the proposed protocol. After the first calibration session, seven subjects were discarded due to a low control of their electroencephalographic signals; nine out of ten subjects controlled a virtual wheelchair during the second session; these same nine subjects achieved a medium accuracy level above 0.83 on the real wheelchair control session. CONCLUSION: The results suggest that more extensive training with the proposed control system can be an effective and safe option that will allow the displacement of a wheelchair in a controlled environment for potential users suffering from some types of motor neuron diseases.


Assuntos
Interfaces Cérebro-Computador , Robótica/instrumentação , Cadeiras de Rodas , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...